
‹#›

Daniel Mitterdorfer
@dmitterd

Benchmarking
Elasticsearch with Rally

“Elasticsearch is just a
search engine, isn't it?”

2

3

4

5

How do you evaluate
performance for all these

use-cases?

6

What we do: Measure, Measure, Measure

7

During Development

What we do: Measure, Measure, Measure

8

During Development

What we do: Measure, Measure, Measure

9

Nightly benchmarks

What we do: Measure, Measure, Measure

10

Sizing benchmarks for specific scenarios*

*) numbers on axis intentionally stripped to avoid interpretation out of context

What we do: Measure, Measure, Measure

11

Performance measurement / tuning at customer site

How we measure

12

13

Rally

https://github.com/elastic/rally

14

You know … for benchmarking Elasticsearch

https://github.com/elastic/rally

10.000 feet view of Rally

15

Rally benchmarked
cluster

provisions

attached
telemetry

system metrics

applies load

Tracks
(Benchmark Data)

Metrics Store

16

Demo

17

7 Deadly
Benchmark Sins

Sin #1: Not paying attention to system setup

• Bare-metal

• SSDs

• Server-class CPU

• Single socket, multi socket?

• Enough memory head-room for FS cache

18

Hardware

Sin #1: Not paying attention to system setup

• Linux, Windows

• No Swap

• Check network configuration

• Think about file system, LVM, etc.

• I/O scheduler: cfq, noop, deadline

• CPU governor: powersave, performance

• JVM version

19

Operating System and JVM

Sin #1: Not paying attention to system setup

• Beware of unwanted caching effects (FS cache, …)

• Benchmark driver and ES on separate machines

• One node per machine (or adjust JVM parameters (GC threads))

• Low-latency, high-throughput network between benchmark driver and ES

• No traffic on this network

20

Benchmark Setup

Sin #2: No warmup

• JIT compiler needs to run first

• Creation of long-living data structures

• FS cache for Lucene segments (memory-mapped IO)

• Benchmark driver needs to reach stable state too

21

Awake before your first coffee? Elasticsearch isn’t either.

Warmup Behaviour: C2 Compilation Events/s

22

Warmup Behaviour: Benchmark Driver Throughput

23

Sin #3: No bottleneck analysis

• Benchmark driver

• System setup: analysis of system background noise (jhiccup)

• Network

24

Are you really benchmarking what you think you’re benchmarking?

First Driver Stress Tests

25

Contention all over the place

Sin #4: The divine benchmarking script

• Not paying attention how metrics are gathered

• System.currentTimeMillis() vs. System.nanoTime()

• Not checking measurement overhead

• No return code checks: the fast 404

• Blind trust in tools: No cross-verification

26

“After all, it produces numbers with 6 decimal places!”

Cross-Validation of Metrics

27

Metric Rally Flight Recorder GC log

Young Gen GC 79,416 ms 89,003 ms(?) 80,853 ms

Old Gen GC 23,964 ms 156,630 ms(?) 23,989 ms

Sin #5: Denying Statistics

• How is run-to-run variance distributed?

• Multiple trial runs and t-test

28

Run-to-run variance

Run-to-run Variance Verification

29

Sin #5: Denying Statistics

• The meaningless mean: Half of the responses are worse than the mean

• Cannot calculate 99.99th percentile from 10 samples

• Don’t average percentiles

• Latency distribution is multi-modal

30

Latency Measurement

Sin #6: Vague metrics

31

User issues request

1 2 3

Request processing
starts

Response is returned

queuing effects

Sin #6: Vague metrics

32

User issues request

1 2 3

Request processing Response arrived

queuing effectsService Time

while (!isDone()) {
long start = System.nanoTime();
// block until the request has finished
send(createRequest());
long end = System.nanoTime();
long serviceTime = end - start;

}

Sin #6: Vague metrics
Service Time

33

Sin #6: Vague metrics

34

User issues request

1 2 3

Request processing Response arrived

queuing effectsLatency

// generator thread
while (!isDoneGenerating()) {

long start = System.nanoTime();
queue.put(createRequest(), start);

}

// request issuing thread
while (!isDoneSending()) {

request, start = queue.take();
send(request);
long end = System.nanoTime();
long latency = end - start;

}

Sin #6: Vague metrics
Latency: Include wait time

35

Sin #6: Vague metrics
Throughput: System at t = n seconds

36

5 4 3 2
Incoming Processing Processing Processing

1
Retired

Sin #6: Vague metrics
Throughput: System at t = n + 1 second

37

10 9 8 7
Incoming Processing Processing Processing

6
Retired

Sin #6: Vague metrics
Throughput: Contrasting t = n and t = n + 1 second

38

10 9 8 7

Incoming Processing Processing Processing

6

Retired

5 4 3 2 1

5 ops/s

39

Sin #6: Vague metrics
Resulting Throughput

Sin #6: Vague metrics

40

Latency … at which throughput?

Source: http://robharrop.github.io/maths/performance/2016/02/20/service-latency-and-utilisation.html

// generator thread
while (!isDoneGenerating()) {

long start = System.nanoTime();
queue.put(createRequest(), start);
Thread.sleep(waitTime(targetThroughput));

}

// request issuing thread
while (!isDoneSending()) {

request, start = queue.take();
send(request);
long end = System.nanoTime();
long latency = end - start;

}

Sin #6: Vague metrics
Latency at a defined throughput

41

Sin #7: Treat Performance as One-Dimensional

• Bulk size

• Query parameters

• Document structure

42

Vary inputs

Sin #7: Treat Performance as One-Dimensional

• Run queries in different order: Avoid caching effects

• Interfere operations: How does indexing behave with concurrent queries?

43

Vary execution order

Sin #7: Treat Performance as One-Dimensional

• Hardware

• OS

• JDK

• …

44

And more

Summary

45

46

‹#›

Performance is easy, all you
need to know is everything

Sergey Kuksenko, Oracle Performance Engineer

48

Questions?

Slides

49

https://bit.ly/rally-muc

https://bit.ly/rally-muc

Further Resources

• “How not to measure latency”: http://www.youtube.com/watch?
v=lJ8ydIuPFeU

• “Benchmarking Blunders and Things That Go Bump in the Night”: http://
arxiv.org/pdf/cs/0404043v1.pdf

50

http://www.youtube.com/watch?v=lJ8ydIuPFeU
http://arxiv.org/pdf/cs/0404043v1.pdf

Image Sources

• “Searching” by “Skyblueseed”: https://www.flickr.com/photos/skyblueseed/
5792500545/ (CC BY-NC-ND 2.0)

• “Curiosity Mastcam L sol 673” by “2di7 & titanio44”: https://www.flickr.com/
photos/lunexit/14570422596/ (CC BY-NC-ND 2.0)

• “80's style Hacker Picture” by “Brian Klug”: https://www.flickr.com/photos/
brianklug/6870005158/ (CC BY-NC 2.0)

• “Works Mini Cooper S DJB 93B” by “Andrew Basterfield”: https://
www.flickr.com/photos/andrewbasterfield/4759364589/ (CC BY-SA 2.0)

51

https://www.flickr.com/photos/skyblueseed/5792500545/
https://www.flickr.com/photos/lunexit/14570422596/
https://www.flickr.com/photos/brianklug/6870005158/
https://www.flickr.com/photos/andrewbasterfield/4759364589/

Image Sources

• “photo” by “Odi Kosmatos”: https://www.flickr.com/photos/kosmatos/
8162850619/ (CC BY 2.0)

• “gags9999”: https://www.flickr.com/photos/gags9999/14124313715/ (CC
BY 2.0)

• “Bachelor Students - Chemistry Lab” by “NTNU”: https://www.flickr.com/
photos/92416586@N05/12188423293/ (CC BY 2.0)

• “42” by “Lisa Risager”: https://www.flickr.com/photos/risager/5067595483/
(CC BY-SA 2.0)

52

https://www.flickr.com/photos/kosmatos/8162850619/
https://www.flickr.com/photos/gags9999/14124313715/
https://www.flickr.com/photos/92416586@N05/12188423293/
https://www.flickr.com/photos/risager/5067595483/

